NanoInnovatio Rome 22 September 2016

A new approach for the DLP-3D printing of functional materials

<u>Ignazio Roppolo</u>, PhD, Erika Fantino, MSc, Annalisa Chiappone, PhD, Prof. Fabrizio Pirri

CSF@polito TORINO ISTITUTO ITALIANO DI TECNOLOGIA Ignazio.roppolo@iit.it

today

3D printing

Rome 22/09/2016

3D printing evolution

Doug Mancosky of printingDDD.com

MASS PRODUCTION OR HI – TECH APPLICATIONS?

ALLAN A

MAIN REQUESTS:

NanoInnovation

Rome 22/09/2016

http://www.aniwaa.com/3d-printing-technologies-and-the-3d-printing-process/

3D printing technologies

Commercial DLP-3D printable formulations

Monomers

DI TECNOLOGIA

Addition of nanoparticles to obtain functional materials Drawbacks:

- ✓ Increased formulation viscosity
- ✓ Limited light penetration depth
- ✓ Difficult nanoparticles dispersion
- ✓ Poor formulation stability

0.3% CNT

Dye

Proposed solution

BOTTOM- UP APPROACH

Addition of nanoparticles <u>precursor</u> to the printable formulations + post treatment on the printed pieces

EASILY PRINTABLE FORMULATIONS + FUNCTIONAL PRINTED OBJECTS

Rome 22/09/2016

In situ generation of silica nanoparticles

7

6

5 -

4 -

-1 -2

Log G' (Pa)

Addition of **TEOS** and **MEMO** to a **PEGDA** formulation Preliminar Photorheology tests PEGDA MEMO TEOS 20 TEOS 30 TEOS 40 Lamp or 3D PRINTING-DLP Printed sample 20 40 60 80 100 Time (s) Teos content / Irradiation time 7 Initiators: Irgacure 819

Chiappone, A.; Fantino, E.; Roppolo, I. Lorusso, M. Manfredi, D. Fino, P. Pirri, F. Calignano, F. ACS Appl. Mat Interfaces 2016, 8, 5627

NanoInnovation

Rome 22/09/2016

Irgacure 1173

In situ generation of silica nanoparticles

Chiappone et al. ACS Appl. Mat Interfaces 2016, 8, 5627

In situ generation of silica nanoparticles

Rome 22/09/2016

<mark>@PoliTo</mark>

10

10

In situ generation of silver nanoparticles

AgNO ₂	TGA Residue	Theoretical	Tg (°C)
(phr)	(%)	Residue (%)	(DSC)
0	0.7	0	-31
5	3.1	3	-29
10	5,9	6	-26
15	8,7	9	-29
20	10,57	12	-24

CAD Model **3D INSPECTION** 3D scanned

DLP object

Good fidelity to CAD

-0.17 +0.31 -0.46

NanoInnovation

a)

d)

10 µm

In situ generation of silver nanoparticles

Sample	ρ (Ωcm)
PEGDA	2.6 *10 ⁸
PEGDA AgNO ₃ 5phr	4.5 *10 ⁶
PEGDA AgNO ₃ 10phr	7 *10 ⁵
PEGDA AgNO ₃ 15phr	1.1 *10 ⁵
PEGDA AgNO ₃ 20phr	1.5 *10 ⁵

c)

Fantino et al. Adv Mat, 2016. 28 (19),3712

NanoInnovation

In situ reduction of GO

In situ reduction of GO

а

С

SPECIFCALLY DESIGNED PHOTOINITIATORS

ETH zürich

Grützmacher group

Cu(II)-BAPO-complex

PEG-diacrylate monomer

Copper nanoparticles in situ formation High printing resolution Microbial applications

BAPO functionalized CelluloseNCs

PEG-monoacrylate monomer

3D printable hydrogels with outstanding water uptake

NanoInnovation

17

HO

Modification of the mechanical response of the polymer upon laser illumination (532 nm)

Easily printable formulations

Functional printed objects

Conclusion

THANK YOU!

Annalisa Chiappone

NanoInnovation

Other group facilities from:

Rome 22/09/2016